3.118 \(\int \frac{1}{\cos ^{\frac{3}{2}}(a+b \log (c x^n))} \, dx\)

Optimal. Leaf size=109 \[ \frac{2 x \left (1+e^{2 i a} \left (c x^n\right )^{2 i b}\right )^{3/2} \text{Hypergeometric2F1}\left (\frac{3}{2},\frac{1}{4} \left (3-\frac{2 i}{b n}\right ),\frac{1}{4} \left (7-\frac{2 i}{b n}\right ),-e^{2 i a} \left (c x^n\right )^{2 i b}\right )}{(2+3 i b n) \cos ^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )} \]

[Out]

(2*x*(1 + E^((2*I)*a)*(c*x^n)^((2*I)*b))^(3/2)*Hypergeometric2F1[3/2, (3 - (2*I)/(b*n))/4, (7 - (2*I)/(b*n))/4
, -(E^((2*I)*a)*(c*x^n)^((2*I)*b))])/((2 + (3*I)*b*n)*Cos[a + b*Log[c*x^n]]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0698297, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4484, 4492, 364} \[ \frac{2 x \left (1+e^{2 i a} \left (c x^n\right )^{2 i b}\right )^{3/2} \, _2F_1\left (\frac{3}{2},\frac{1}{4} \left (3-\frac{2 i}{b n}\right );\frac{1}{4} \left (7-\frac{2 i}{b n}\right );-e^{2 i a} \left (c x^n\right )^{2 i b}\right )}{(2+3 i b n) \cos ^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )} \]

Antiderivative was successfully verified.

[In]

Int[Cos[a + b*Log[c*x^n]]^(-3/2),x]

[Out]

(2*x*(1 + E^((2*I)*a)*(c*x^n)^((2*I)*b))^(3/2)*Hypergeometric2F1[3/2, (3 - (2*I)/(b*n))/4, (7 - (2*I)/(b*n))/4
, -(E^((2*I)*a)*(c*x^n)^((2*I)*b))])/((2 + (3*I)*b*n)*Cos[a + b*Log[c*x^n]]^(3/2))

Rule 4484

Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Dist[x/(n*(c*x^n)^(1/n)), Subst[Int[x
^(1/n - 1)*Cos[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n,
1])

Rule 4492

Int[Cos[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Dist[(Cos[d*(a + b*Log[x])]^p*x^(
I*b*d*p))/(1 + E^(2*I*a*d)*x^(2*I*b*d))^p, Int[((e*x)^m*(1 + E^(2*I*a*d)*x^(2*I*b*d))^p)/x^(I*b*d*p), x], x] /
; FreeQ[{a, b, d, e, m, p}, x] &&  !IntegerQ[p]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx &=\frac{\left (x \left (c x^n\right )^{-1/n}\right ) \operatorname{Subst}\left (\int \frac{x^{-1+\frac{1}{n}}}{\cos ^{\frac{3}{2}}(a+b \log (x))} \, dx,x,c x^n\right )}{n}\\ &=\frac{\left (x \left (c x^n\right )^{-\frac{3 i b}{2}-\frac{1}{n}} \left (1+e^{2 i a} \left (c x^n\right )^{2 i b}\right )^{3/2}\right ) \operatorname{Subst}\left (\int \frac{x^{-1+\frac{3 i b}{2}+\frac{1}{n}}}{\left (1+e^{2 i a} x^{2 i b}\right )^{3/2}} \, dx,x,c x^n\right )}{n \cos ^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )}\\ &=\frac{2 x \left (1+e^{2 i a} \left (c x^n\right )^{2 i b}\right )^{3/2} \, _2F_1\left (\frac{3}{2},\frac{1}{4} \left (3-\frac{2 i}{b n}\right );\frac{1}{4} \left (7-\frac{2 i}{b n}\right );-e^{2 i a} \left (c x^n\right )^{2 i b}\right )}{(2+3 i b n) \cos ^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )}\\ \end{align*}

Mathematica [B]  time = 3.61347, size = 431, normalized size = 3.95 \[ \frac{x \left ((3 b n-2 i) x^{-i b n} \left (2 x^{i b n} \sqrt{e^{-i a} \left (c x^n\right )^{-i b}+e^{i a} \left (c x^n\right )^{i b}} (b n \cos (b n \log (x))-2 \sin (b n \log (x)))-(b n-2 i) \sqrt{2+2 e^{2 i a} \left (c x^n\right )^{2 i b}} \text{Hypergeometric2F1}\left (\frac{1}{2},-\frac{b n+2 i}{4 b n},\frac{3}{4}-\frac{i}{2 b n},-e^{2 i a} \left (c x^n\right )^{2 i b}\right ) \sqrt{\cos \left (a+b \log \left (c x^n\right )\right )}\right )-\left (b^2 n^2+4\right ) x^{i b n} \sqrt{2+2 e^{2 i a} \left (c x^n\right )^{2 i b}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4}-\frac{i}{2 b n},\frac{7}{4}-\frac{i}{2 b n},-e^{2 i a} \left (c x^n\right )^{2 i b}\right ) \sqrt{\cos \left (a+b \log \left (c x^n\right )\right )}\right )}{b n (3 b n-2 i) \sqrt{e^{-i a} \left (c x^n\right )^{-i b}+e^{i a} \left (c x^n\right )^{i b}} \sqrt{\cos \left (a+b \log \left (c x^n\right )\right )} \left (b n \sin \left (a+b \log \left (c x^n\right )-b n \log (x)\right )-2 \cos \left (a+b \log \left (c x^n\right )-b n \log (x)\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[a + b*Log[c*x^n]]^(-3/2),x]

[Out]

(x*(-((4 + b^2*n^2)*x^(I*b*n)*Sqrt[2 + 2*E^((2*I)*a)*(c*x^n)^((2*I)*b)]*Sqrt[Cos[a + b*Log[c*x^n]]]*Hypergeome
tric2F1[1/2, 3/4 - (I/2)/(b*n), 7/4 - (I/2)/(b*n), -(E^((2*I)*a)*(c*x^n)^((2*I)*b))]) + ((-2*I + 3*b*n)*(-((-2
*I + b*n)*Sqrt[2 + 2*E^((2*I)*a)*(c*x^n)^((2*I)*b)]*Sqrt[Cos[a + b*Log[c*x^n]]]*Hypergeometric2F1[1/2, -(2*I +
 b*n)/(4*b*n), 3/4 - (I/2)/(b*n), -(E^((2*I)*a)*(c*x^n)^((2*I)*b))]) + 2*x^(I*b*n)*Sqrt[1/(E^(I*a)*(c*x^n)^(I*
b)) + E^(I*a)*(c*x^n)^(I*b)]*(b*n*Cos[b*n*Log[x]] - 2*Sin[b*n*Log[x]])))/x^(I*b*n)))/(b*n*(-2*I + 3*b*n)*Sqrt[
1/(E^(I*a)*(c*x^n)^(I*b)) + E^(I*a)*(c*x^n)^(I*b)]*Sqrt[Cos[a + b*Log[c*x^n]]]*(-2*Cos[a - b*n*Log[x] + b*Log[
c*x^n]] + b*n*Sin[a - b*n*Log[x] + b*Log[c*x^n]]))

________________________________________________________________________________________

Maple [F]  time = 0.153, size = 0, normalized size = 0. \begin{align*} \int \left ( \cos \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{-{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(a+b*ln(c*x^n))^(3/2),x)

[Out]

int(1/cos(a+b*ln(c*x^n))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\cos \left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(a+b*log(c*x^n))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(b*log(c*x^n) + a)^(-3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(a+b*log(c*x^n))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\cos ^{\frac{3}{2}}{\left (a + b \log{\left (c x^{n} \right )} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(a+b*ln(c*x**n))**(3/2),x)

[Out]

Integral(cos(a + b*log(c*x**n))**(-3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\cos \left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(a+b*log(c*x^n))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(b*log(c*x^n) + a)^(-3/2), x)